Statistics Syllabus

Grades: 9-12

Type: Public High School

Total Enrollment: 2000-2200 students

School Setting:
The courses are currently divided into eight 100-minute blocked class periods. Four classes meet each day, every other day. Students take from six to 8 classes per semester. A full semester course equals one credit. Burke High School requires 49 credits to graduate. At Burke High School, the prerequisite for this course is a grade of a B or better in Honors Algebra 3-4 and concurrent enrollment in Precalculus/Trigonometry or successful completion of PreCalculus/Trigonometry, teacher recommendation and parent/student signature indicating full-year commitment.

AP Statistics Class Size: 18-30 students

Course Design:
The grading syllabus I distribute to the students at the beginning of the school year follows on the next page.
UNO INTRODUCTION TO APPLIED STATISTICS FOR IS&T – CIST 2500
(Fulfills AP Statistics Credit in High School)

Instructor: Jessica Jolkowski
E-mail: Jessica.Jolkowski@ops.org
Office Phone Number: 402-557-3200
Plan Periods: Blocks 4 & 7
Office/Classroom: Room 225
Best times to contact: 7:15-7:35 am, 3:05-3:30 pm, or during plan

Course Description: The course emphasizes the function of statistics in information science and technology including topics such as descriptive statistical measures, probability discrete probability, sampling, estimation analysis, hypothesis testing, regression, and analysis of variance. A well-known computer package will be used to support the problem-solving process. This is a college level first course in statistics that also follows the College Board’s Advanced Placement Statistics syllabus. The course also follows the American Statistical Association and Mathematical Association of America joint committee recommendations for teaching introductory statistics. This course is aligned with UNO disciplinary outcomes as reflected in UNO’s master syllabi. Using the TI-84 Plus graphing calculator, students are introduced to the major concepts and tools for collecting, analyzing, and drawing conclusions from data. Topics include exploring data, planning a study, anticipating patterns, and statistical inference. Completion of this course prepares students for the Statistics Advanced Placement Exam.

Instructional Philosophy: Students will become familiar with the relevance, applications, and processes of statistics, including gathering, analyzing, and interpreting results of data, and effective communication of their processes and conclusions.

Mission Statement: Burke High School is dedicated to providing exemplary education through the collaborative efforts of students, parents, staff and community.

Content Standards:

<table>
<thead>
<tr>
<th>Semester 1:</th>
<th>Semester 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizing Data</td>
<td>Probability</td>
</tr>
<tr>
<td>Regression</td>
<td>Inference for Distributions</td>
</tr>
<tr>
<td>Producing Data</td>
<td>Inference for Proportions</td>
</tr>
<tr>
<td>Probability</td>
<td>Inference for Tables and Regression</td>
</tr>
<tr>
<td>Statistical Applications</td>
<td>Statistical Applications</td>
</tr>
</tbody>
</table>

This UNO course has been approved by UNO faculty to be offered for dual credit. Students must submit a dual credit application and meet all registration, academic, and other institutional requirements according to established deadlines in order to receive UNO course credit. Please visit dualenroll.unomaha.edu for additional information.
Major Units of Study
1. Exploring Data: Describing patterns and departures from patterns
2. Sampling and Experimentation: Planning and conducting a study
3. Anticipating Patterns: Exploring random phenomena using probability and simulation
4. Statistical Inference: Estimating population parameters and testing hypotheses

Class Rules and Expectations:
- Follow all guidelines in the Burke handbook.
 - Burke policy on hats, food, cell phones, musical devices, tardies, etc. will be enforced.
- Come to class prepared to work, with your assignment and all supplies needed.
- Respect — yourself, your teachers, your peers, and the property of others.
- Complete all assignments and instructions promptly.
- Visit the instructor before or after school if extra help is needed, please!

Assessment:
- Course grades will be determined by planned assessments such as tests, quizzes, and projects scored with rubrics.
- Coursework and independent practice will be completed regularly. Some of this material will appear on periodic quizzes, after feedback and opportunity for review.
- A summative unit assessment is to be expected at the end of each major unit outlined above.
- State Testing: All 11th-grade students are required to complete the ACT test, which is usually administered during the month of April.
- District Testing: In order to prepare students for the ACT test, OPS requires all 9th and 10th grade students to complete MAP testing. To determine their strengths and weaknesses in order to help them improve their math skills.
- AP Test: May 15, 2020. This exam is designed to measure how well you’ve mastered the content and skills of the course — a successful score could earn you credit and advanced placement in college.

Special Problems:
These special problems and projects are in the form of extended formal writing assignments. All problems and projects will need to be completed in Microsoft Word and a hard copy turned in. Scoring rubrics are generally handed out with the assignment. Form and technical adequacy are enforced within the rubrics as well as problem content. The problems and projects will focus on current chapter topics and are assigned at various times throughout the year. The main purpose of these course projects and problems is for students to gain strong experiences in developing statistical studies and make sound connections and judgments between the design and the results of an experiment. As the course progresses, they will grow to involve and incorporate all the aspects of the statistical process including design, analysis and conclusions. The language and vocabulary of statistics will be emphasized on the scoring rubrics for these special problems. Students should be able to demonstrate clear communication skills when it comes to statistical methods, results and interpretations. Communication skills may be graded from oral presentations of such special problems.

While the graphing calculators are used to help answer questions on a daily basis, these special problems and projects will require the use of EXCEL and MINITAB. Instruction and computer lab time will be provided on the use of the software. EXCEL and MINITAB are powerful technological tools that aid in the speed and accuracy of statistical calculations. The formal write ups are required in order to assist students in developing into competent interpreters and
investigators of statistical data and information. Proof and algebraic justification of software results are utilized within the problems and projects in order to deepen their understanding of the statistics. As a result, students' conclusions drawn from these formal write-ups are of the highest importance to show their ability to draw connections between the analysis and conclusions of all statistical design experiments.

OPS Secondary Grading Practices*
All coursework and assessments are judged based on the level of student learning from “below basic” to “advanced.” This course will provide multiple opportunities to achieve at the “proficient” to “advanced” levels. Students are evaluated based on a proficiency scale or project rubric. Proficiency scales for this course are available upon request.

There are three types of coursework*

- **Practice** – assignments are brief and done at the beginning of learning to gain initial content (e.g., student responses on white boards, a valid sampling of math problems, keyboarding exercises, and diagramming sentences, checking and recording resting heart rate). Practice assignments are not generally graded for accuracy (descriptive feedback will be provided in class) and are not a part of the grade. Teachers may keep track of practice work to check for completion and students could also track their practice work. Practice work is at the student’s instructional level and may only include Basic (2) level questions.

- **Formative (35% of the final grade)** – assessments/assignments occur during learning to inform and improve instruction. They are minor assignments (e.g., a three paragraph essay, written responses to guiding questions over an assigned reading, completion of a comparison contrast matrix). Formative assignments are graded for accuracy and descriptive feedback is provided. Formative work may be at the student’s instructional level or at the level of the content standard. Formative assessments/assignments will have all levels of learning – Basic (2), Proficient (3), and Advanced (4), which means that for every formative assessment/assignment, students will be able to earn an Advanced (4). Teachers will require students to redo work that is not of high quality to ensure rigor and high expectations. The students score on a formative assessment that was redone will be their final score.

- **Summative (65% of the final grade)** – assessments/assignments are major end of learning unit tests or projects used to determine mastery of content or skill (e.g., a research paper, an oral report with a power point, major unit test, and science fair project). Summative assignments are graded for accuracy. Summative assignments assess the student’s progress on grade level standards and may not be written at the student's instructional level. Summative assessments/assignments will have all levels of learning – Basic (2), Proficient (3), and Advanced (4), which means that for every formative assessment/assignment students, will be able to earn an advanced (4). To maintain alignment of coursework to content standards, which is a key best practice for standards-based grading, teachers will utilize a standardized naming convention for each of the standards within a course. The content standard will be marked on each assignment entered into Infinite Campus (District Grading Program) using all capital letters followed by a colon. After the colon will be the title of the coursework.
At the end of the grading period, scores are converted to a letter grade using this grading scale.

A = 3.26 – 4.00
B = 2.51 – 3.25
C = 1.76 – 2.50
D = 1.01 - 1.75
F = 0.00 – 1.00

Redoing/Revising Student Coursework*

1. Students are responsible for completing all coursework and assessments as assigned.
2. Students will be allowed redos and revisions of coursework for full credit as long as they are turned in during that unit of study while a student still has an opportunity to benefit from the learning. When time permits, teachers should allow the redoing or revising of summative assessments.
3. Students are expected to complete assessments when given to the class, or if a student was justifiably absent, at a time designated by the teacher.
4. Redoing, retaking or revising will be done at teacher discretion in consultation with the student and parent(s). Teachers may schedule students before, during, or after school to address needed areas of improvement if not convenient during class. The time and location for redoing, retaking or revising will be done at the teacher’s discretion in consultation with the student and parent(s).
5. Scores for student work after retaking, revising or redoing will not be averaged with the first attempt at coursework but will replace the original score.

*Indicates standardized language

Specifically for this course:

1. Any graded assignment completed and turned in on the original due date can be redone to improve the grade as long as the ‘redo’ is turned in before the summative assessment for that unit.
2. Late assignments turned in before the summative assessment for a unit will still be graded without penalty—teachers will be available to provide descriptive feedback regarding the late assignment, however the assignment will not be eligible to be redone for grade improvement.
3. To be eligible to retake a summative assessment, all assignments for that unit must have been completed and turned in prior to the scheduled summative assessment date.
4. Assignments that are not turned in on the original due date as a result of absences will be handled according to The Burke Handbook Policy.

Independent Practice:
The role of independent practice is to develop knowledge and skills effectively and efficiently during the unit of study. Independent practice helps guide the learning process by providing accurate, timely and helpful feedback to students without penalty.
Texts, References and Resource Materials

Primary Text:
ISBN: 0-7167-3370-6

References and Resource Materials

Against All Odds Video Units (Listed as Video AA under supplementals)
1: What is Statistics
2: Picturing Distributions
3: Describing Distributions
4: Normal Distributions
5: Normal Calculations
6: Time Series
7: Models for Growth
8: Describing Relationships
9: Correlation
10: Multidimensional Data Analysis
11: The Question of Causation
12: Experimental Design
13: Blocking and Sampling
14: Sampling and Surveys
15: What is Probability?
16: Random Variables
17: Binomial Distributions
18: The Sample Mean and Control Charts
19: Confidence intervals
20: Significance Tests
21: Inference for One Mean
22: Comparing Two Means
23: Inference for Proportions
24: Inference for Two-Way Tables
25: Inference for Relationships
26: Case Study

Decisions Through Data Units (Listed as Video DD under supplementals)
1: What is Statistics?
2: Stemplots
3: Histograms and Distributions
4: Measures of Center
5: Boxplots
6: The Standard Deviation
7: Normal Curve
8: Normal Calculations
9: Straight-Line Growth
10: Exponential Growth
11: Scatterplots
12: Fitting Lines to Data
13: Correlation
14: Save the Bay
15: Designing Experiments
16: The Question of Causation
17: Census and Sampling
18: Sample Surveys
19: Sampling Distributions
20: Confidence Intervals
21: Tests of Significance

Course Timeline and Content Syllabus

FIRST SEMESTER

<table>
<thead>
<tr>
<th>WEEK</th>
<th>TOPIC</th>
<th>ASSIGNMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>CHAPTER 1: Exploring Data</td>
<td>#4-8,9-10,22-23,12-13,14,15,17,20</td>
</tr>
<tr>
<td></td>
<td>1.1 Displaying Distributions with Graphs</td>
<td>Quiz 1.1</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variables: categorical and quantitative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dotplots and histograms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interpreting histograms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stemplots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time plots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Describing Distributions with Numbers</td>
<td>#24,25,26,30,31-34,35-37</td>
</tr>
<tr>
<td></td>
<td>Measuring center: the mean</td>
<td>#44,45,47,50,53b,c</td>
</tr>
<tr>
<td></td>
<td>Measuring center: the median</td>
<td>Chapter 1 Test</td>
</tr>
<tr>
<td></td>
<td>Measuring spread: the quartiles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The five-number summary and boxplots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measuring spread: standard deviation</td>
<td></td>
</tr>
</tbody>
</table>

Students will be able to use TI-83 or TI-84 graphing calculators to input data into a list in order to calculate one variable statistics and boxplots.

Supplementals

- Video DD 1-5
- Special Problem: Newspaper Obituary: *Students will collect data from the daily newspaper and record the information into EXCEL or MINITAB. The data will then be analyzed graphically with the software to find interesting trends among men and women. Instruction on the use of EXCEL and MINITAB will be provided in the computer lab.*
- First Day of School Survey
- Chapter Outline WS

3-4	CHAPTER 2: The Normal Distributions	#1-5,6-9,11-19
	2.1 Density Curves and the Normal Distributions	Quiz 2.1
	Density curves	
	The median and mean of a density curve	
	Normal distributions	
	2.2 Standard Normal Calculations	#22-25,26-33
	The standard normal distribution	#38-46
	Normal distribution calculations	
	Finding a value given a proportion	
	Assessing normality	Chapter 2 Test

Students will be able to use TI-83 or TI-84 graphing calculators to perform calculations using normalcdf

Supplementals

- Video DD 6-8
- Special Problem 2A: Exploring Normal Distributions: *Students will use EXCEL or MINITAB to generate repeated samples of size 25 in order to investigate their means and standard deviations.*
- Chapter Outline Worksheet
| 5-6 | CHAPTER 3: Examining Relationships
3.1 Scatterplots
Interpreting scatterplots
Adding categorical variables to scatterplots | #1-3,5,7-
3.2: Correlation
The correlation r
Facts about correlation | #1018-19,20-24,25-27,30
Quiz 3.1/3.2 |
| --- | --- | --- | --- |
| | | 3.3 Least-Squares Regression
The least-squares regression line
Facts about least-squares regression
Residuals & Influential observations | #31,33-35,36,39-41
#43,44,45,52,55
Chapter 3 Test |

Students will be able to use TI-83 or TI-84 graphing calculators to input data into a lists in order to create scatterplots, generate a least-squares regression equation and calculate correlation.

Supplementals

- Video DD 9,11,12,13
- Special Problem 3A: Exploring Least Squares Regression (3 data sets): *Students will use EXCEL or MINITAB to plot and then compute the linear regression for three data sets. Although the three data sets are quite different, students will discover something quite interesting in their regression equations.*
 Chapter Outline Worksheet

| 7-9 | CHAPTER 4: More on Two-Variable Data
4.1 Modeling Nonlinear Data
Exponential growth and decay
Residuals again
Power regression | #1-2,4,12,13
4.2 Interpreting Correlation and Regression
Extrapolation Lurking variables Using averaged data
Association is not causation | #19-24,17,25-28
Quiz 4.1/2 |
| --- | --- | --- | --- |
| | | 4.3 Relations in Categorical Data
Marginal distributions
Describing relationships
Simpson’s paradox | #30-41
#42-45,
47,50,56,58,61
Chapter 4 Test |

Students will be able to use TI-83 or TI-84 graphing calculators to input data into lists in order to generate regression information.

Supplementals

- Video DD 16
- Special Problem: M&M Half Life (with Log Paper): *Students will use a process with M&Ms to collect data about half life. They will plot the data and develop regression equations from both the standard graph paper and the log graph paper.*
 Regression Handout with Problems
 Chapter Outline Worksheet
| 10-11 | CHAPTER 5: Producing Data: Samples and Experiments
5.1 Designing Samples
Simple Random Samples
More Complicated Sampling Designs
Cautions about Sample Surveys
Inference about the Population
| Quiz 5.1 |
| 13-23 | #1-4,6-8,16,18,22,23 |
| 10-11 | 5.2 Designing Experiments
Experiments
Comparative Experiments
The Logic of Experimental Design
Cautions about Experimentation
Other Experimental Designs
| Quiz 5.2 |
| #26,29,30-32,35-44,46 |
| 10-11 | 5.3 Simulating Experiments
Simulation Basics
Simulations with a Table of Random Digits
Simulations with Technology
| #57,63,78,80 |
| Simulation Worksheets- Cereal Box Example |
| #66,67,72,77 |
| 13-23 | Chapter 5 Test |

Students will be able to use TI-83 or TI-84 graphing calculators to generate data regarding random phenomena.

Supplements

Video AA 12-14
Special Problem: Simulations:
Students will perform several simulation activities in class. Each student will choose one activity and produce data independently. A formal write up will be turned in. The data should be collected, labeled and presented in such a way that conclusions can easily be made. A conclusionary paragraph should follow, emphasizing assumptions made, problems encountered and decisions made.
Chapter Outline Worksheet

| 12-13 | CHAPTER 6: Probability: The Study of Randomness
6.1: Randomness
Randomness
The uses of Probability
| Quiz 6.1 |
| #7,8,12,13,15,16,17-23 |
| 12-13 | 6.2 Probability Models
Sample Spaces
Probability Rules
Assigning Probabilities: Finite and Equally Likely Outcomes
Independence and the Multiplication Rule
| #24-27,29-32,34,35 |
| 12-13 | 6.3 More About Probability
Rules of Probability
Conditional Probability
General Multiplication Rule
| #37-40,41-50 |
| #53-55,59-62,64 |
| 12-13 | Chapter 6 Test |

Students will be able to use TI-83 or TI-84 graphing calculators to generate data regarding random phenomena.
14-15
CHAPTER 7: Random Variables
- 7.1 Discrete and Continuous Random Variables
- Discrete Random Variables
- Continuous Random Variables
- Normal Distributions as Probability Distributions

Quiz 7.1

Students will be able to use TI-83 or TI-84 graphing calculators to find probabilities of events as areas under the standard normal distribution curve.

Supplementals
- Video AA 15
- Probability Worksheet
- Chapter Outline Worksheet

Assignments
- #1-7,8,9,13-16

16-17
CHAPTER 8: The Binomial and Geometric Distributions
- 8.1 The Binomial Distributions
- The Binomial Setting
- Finding Binomial Probabilities
- Binomial Formulas
- Binomial Mean and Standard Deviation

Quiz 8.1

Assignments
- #1-4,5-10,12,13,15-17,19-23

Students will be able to use TI-83 or TI-84 graphing calculators to determine binomial and geometric probabilities and construct probability distribution tables and histograms.

Supplementals
- Video AA 16
- Chapter Outline Worksheet

Assignments
- #17-19,20-23,24,25,26,28-33
- #34-37,38bc

18
FINAL Review & Exam

Students will be able to use TI-83 or TI-84 graphing calculators to find probabilities of events as areas under the standard normal distribution curve.

Supplementals
- Video AA 17
- Chapter Outline Worksheet

Assignments
- #15-21

SECOND SEMESTER

<table>
<thead>
<tr>
<th>WEEK</th>
<th>TOPIC</th>
<th>ASSIGNMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>CHAPTER 9: Sampling Distributions</td>
<td>#1-4,9,10,7,12,13,14</td>
</tr>
<tr>
<td></td>
<td>9.1 Sampling Distributions</td>
<td>Quiz 9.1</td>
</tr>
<tr>
<td></td>
<td>Sampling Variability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Describing Sampling Distributions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias and Variability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.2 Sample Proportions</td>
<td>#15-21</td>
</tr>
<tr>
<td></td>
<td>Sampling Distribution of a Sample Proportion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rules of Thumb</td>
<td></td>
</tr>
</tbody>
</table>
9.3 Sample Means
Mean and Standard Deviation of a Sample Mean
Central Limit Theorem

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>#27-29,30-40,35</td>
<td>Chapter 9 Test</td>
</tr>
<tr>
<td>#41-47</td>
<td></td>
</tr>
</tbody>
</table>

Students will be able to use TI-83 or TI-84 graphing calculators to find probabilities of events as areas under the standard normal distribution curve.

Supplementals

<table>
<thead>
<tr>
<th>Video DD 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Limit Theorem Pennies Activity</td>
</tr>
<tr>
<td>Special Problem: Women’s Height (n=1, n=5, n=20)</td>
</tr>
<tr>
<td>Chapter Outline Worksheet</td>
</tr>
</tbody>
</table>

3-5

CHAPTER 10: Introduction to Inference

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2-12,13-21</td>
<td>Quiz 10.1</td>
</tr>
</tbody>
</table>

10.2 Tests of Significance

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>#27,33,28,34,35,36,29-32,44,45,48,49,52</td>
<td>Quiz 10.2</td>
</tr>
</tbody>
</table>

Students will be able to use TI-83 or TI-84 graphing calculators to find the z-value and P-value from performing a z test of significance.

Supplementals

<table>
<thead>
<tr>
<th>Video DD 20,21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Savers Power Activity</td>
</tr>
<tr>
<td>Special Problem: Crowdedness: Students will perform and analyze z-test results from data provided on “crowdedness” feelings of men and women with known mean and standard deviations. Data analysis may be performed on the student’s choice of software.</td>
</tr>
<tr>
<td>Chapter Outline Worksheet</td>
</tr>
</tbody>
</table>

6-7.5

CHAPTER 11: Inference for Distributions

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3-11,12-18,19-23</td>
<td>Quiz 11.1</td>
</tr>
</tbody>
</table>

11.2 Comparing Two Means

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>#33,34,37-39</td>
<td>Chapter 11 Test</td>
</tr>
<tr>
<td>#40-42,45,48,50</td>
<td></td>
</tr>
</tbody>
</table>
Students will be able to use TI-83 or TI-84 graphing calculators to find the P-value from performing a t test of significance.

| Supplementals | Video AA 21,22
| | Chapter Outline Worksheet
| 7.5-10 | CHAPTER 12: Inference for Proportions
| | 12.1 Inference for a Population Proportion
| | Assumptions
| | z-procedures
| | Sample Size
| | 12.2 Comparing Two Proportions
| | Confidence Intervals
| | Significance Tests
| | #1-5,6-9,10,11,13-19
| | #21-28,32,34
| | #36-39
| | Chapter 12 Test

Students will be able to use TI-83 or TI-84 graphing calculators to find P-value from performing tests of significance.

| Supplementals | Video AA 23
| | Special Problem: M&M Proportions: Students will use their choice of software to do inference for proportions of M&M candy colors. Special consideration in the write-up should address all assumptions. Chapter Outline Worksheet
| 11 | Practice AP Exam
| 12 | CHAPTER 13: Inference for Tables: Chi-Square Procedures
| | 13.1 Test for Goodness of Fit
| | 13.2 Inference for Two Way Tables
| | Expected Counts
| | Chi-Square Test
| | #1,3,4,6,14,16,18,20,22
| | Quiz 13.1/13.2

| Supplementals | Video AA 24
| 13 | CHAPTER 14: Inference for Regression
| | 14.1 Inference About the Model
| | Standard Error
| | Confidence Intervals for Regression Slope
| | Significance Tests
| | #1,2,4,6,8
| 14 | AP Review
| 15 | AP Review
| 16 | AP EXAM DATE
| 17 | SENIOR FINALS

Note: Graphing Calculator screen shots, Minitab and/or SPSS print outs are available in the text and additional resources and are used throughout the course.